Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation.
نویسندگان
چکیده
In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5' end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.
منابع مشابه
Bimodal regulation of ICR1 levels generates self-organizing auxin distribution.
Auxin polar transport, local maxima, and gradients have become an important model system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin tr...
متن کاملArabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation.
Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mu...
متن کاملRoot Regeneration in Pistachio Rootstock is Affected by Auxin and Polyamines
Pistacia vera cv Badami-e-riz and P.vera cv Ghazvini are the most important and popular rootstocks in Iran, which tolerate salinity and phytophthora fungi. This study was conducted to evaluate the effects of various concentrations of polyamines and IBA on root regeneration of transplanted bare- rooted ‘Badami-e-riz’ and ‘Ghazvini’ pistachio rootstocks. The mean comparison between IBA and polyam...
متن کاملIAA8 Involved in Lateral Root Formation Interacts with the TIR1 Auxin Receptor and ARF Transcription Factors in Arabidopsis
The expression of auxin-responsive genes is regulated by the TIR1/AFB auxin receptor-dependent degradation of Aux/IAA transcriptional repressors, which interact with auxin-responsive factors (ARFs). Most of the 29 Aux/IAA genes present in Arabidopsis have not been functionally characterized to date. IAA8 appears to have a distinct function from the other Aux/IAA genes, due to its unique transcr...
متن کاملRoot System Architecture from Coupling Cell Shape to Auxin Transport
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 160 2 شماره
صفحات -
تاریخ انتشار 2012